Voltage-gated proton channels and other proton transfer pathways.
نویسنده
چکیده
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
منابع مشابه
Voltage-gated proton channels find their dream job managing the respiratory burst in phagocytes.
The voltage-gated proton channel bears surprising resemblance to the voltage-sensing domain (S1-S4) of other voltage-gated ion channels but is a dimer with two conduction pathways. The proton channel seems designed for efficient proton extrusion from cells. In phagocytes, it facilitates the production of reactive oxygen species by NADPH oxidase.
متن کاملWater, proton transfer, and hydrogen bonding in ion channel gating.
Several types of ion channels, the proteins responsible for the transport of ions across cell membranes, are described. Those of most interest are responsible for the functioning of nerve cells, and are voltage gated. Here, we propose a model for voltage gating that depends on proton transport. There are also channels that are proton-gated, of which some are bacterial. For one, a structure is k...
متن کاملVoltage-gated proton channel in a dinoflagellate.
Fogel and Hastings first hypothesized the existence of voltage-gated proton channels in 1972 in bioluminescent dinoflagellates, where they were thought to trigger the flash by activating luciferase. Proton channel genes were subsequently identified in human, mouse, and Ciona intestinalis, but their existence in dinoflagellates remained unconfirmed. We identified a candidate proton channel gene ...
متن کاملDiversity of voltage gated proton channels.
Voltage gated proton channels were first discovered in snail neurons and recently have been found in many mammalian cells. As their name suggests, H+ channels are sensitive to voltage, with an open probability that increases with membrane depolarization. Many properties that are shared by voltage-gated proton channels make them unique among ion channels. They show high selectivity for protons, ...
متن کاملPado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions
An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, vol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological reviews
دوره 83 2 شماره
صفحات -
تاریخ انتشار 2003